Tin-117m is a unique conversion electron radioisotope¹—

A veterinary therapeutic in an injectable colloidal suspension

Tin-117m

Synovetin OA® is a conversion electron-emitting therapeutic veterinary device of tin-117m microparticles in a colloidal, sterile suspension.²

- pH between 6.5 and 9.0
- \bullet At least 90% of the particles sized between 1.5 μm and 20 μm (HORIBA light scatter instrument)

Two principal forms of energy are emitted by tin-117m as it decays:³

- Monoenergetic conversion electrons (significant energies 127–158 keV; emission probability 113%)
- Imageable gamma radiation (159 keV, 86% abundant)
- Accompanying low-energy emissions are Auger electrons (<21 keV) and X-rays (<30 keV)

Duration of effect

Tin-117m is metastable, indicated by the "m" suffix³

- A radioisotope with an energetic nucleus and a half-life of 14 days
- Distinct from highly unstable radionuclides with shorter half-lives
- Provides an ideal duration of effect to achieve therapeutic results and short-term stability during storage and handling
- Decays to inert tin and is removed via the lymphatics

Introducing Synovetin OA

Unique Advantages

Tin-117m is a unique radionuclide without the disadvantages of high-energy beta-emitting radionuclides.⁴

- Distinct from high-energy beta particles that have a wide tissue penetration range (50–11,000+ μm).
- The ultra-narrow, discrete radiation range of tin-117m enables more precise dosimetry and avoids adverse effects on adjacent tissues that can occur with betaemitting radionuclides.

Comparison of two radionuclides in therapeutic veterinary application³⁻⁷

lodine-131— Radioactive drug used to treat feline hyperthyroidism	Tin-117m— Conversion electron device used to treat canine osteoarthritis
Half-life:	Half-life:
8 days	14 days
Maximum therapeutic energy:	Maximum therapeutic energy:
807 keV	158 keV
Max. tissue penetration of beta:	Max. tissue penetration of CE:
3 mm	0.3 mm
Therapeutic emission:	Therapeutic emission:
Beta	Conversion electrons
Diagnostic emission:	Diagnostic emission:
Gamma (364, 637 keV)	Gamma (159 keV)

Systemic treatment:

- Systemic penetration; affects all bodily fluids: feces, urine, sweat, saliva, blood
- Current federal guidance suggests cats should be quarantined for no less than 4 days*

*NUREG 1556 Vol 7

Local/targeted treatment:

- Limited penetration; 99.1% is retained in the joint space; does not affect fur, feces, or urine
- The treated dog can go home the same day
- No need for confinement or rehabilitation

Tin-117m is a unique conversion electron radioisotope¹—

A veterinary therapeutic in an injectable colloidal suspension

Diagnostic Properties

In addition to conversion electrons, tin-117m emits gamma radiation, a zero-mass unit of electromagnetic radiation that results from nuclear decay of a radionuclide.¹

- Gamma radiation is readily detectable in tissue by imaging methods such as scintigraphy.
- Tin-117m emits gamma radiation at 159 keV that can be used diagnostically to detect the distribution and duration of its presence in tissue of treated patients.
- Similar gamma energy to technetium-99m (^{99m}Tc), a common systemic radionuclide with gamma emissions of 140 keV used in diagnostic procedures, including cardiac, lung, and bone studies.

Image courtesy of Jimmy Lattimer, DVM, MS, DACVR

Scintigraphy of a canine elbow shows high doseretention of the tin-117m with minimal uptake in the draining lymph node after administration. Retention over the first 6-week time period was measured at >99% in synovial tissue, indicating a continuous therapeutic effect consistent with the 14-day half-life.

Use in RSO

Radiosynoviorthesis, or RSO, offers a minimally invasive procedure that lowers bleeding risk in cases of synovitis and avoids problems with systemic therapies.⁸⁻¹⁰

- RSO in relatively small canine joints is advantageous for canine elbow dysplasia that is difficult to treat.¹¹
- A key aspect of RSO using tin-117m is the ability to accurately deliver energy of sufficient duration and intensity to achieve removal of the inflamed cells.

Tin-117m conversion electrons have a short, well-defined tissue penetration range. This allows precise dosimetry and avoids exposure of non-target tissues for a significant antiinflammatory effect with no negative effects.⁷

References: 1. Fox SM, Donecker JM. Technical Bulletin: Synovitis. Exubrion Therapeutics. 2019.
2. Synovetin OA[®] [Homogeneous Tin (^{117m}Sn) Colloid] Device Label, Exubrion Therapeutics. August 2019.
3. Donecker JM, Stevenson NR. Technical Bulletin: Radiosynoviorthesis: A new therapeutic and diagnostic tool for canine joint inflammation. Exubrion Therapeutics. 2019.
4. Brenner W. Radionuclide joint therapy. In: Eary JF, Brenner W, eds. Nuclear Medicine Therapy. New York: Informa Healthcare; 2007:21-44.
5. Avery K, Hammond M, Hawkins S, et al. Consolidated guidance about materials licenses. U.S. Nuclear Regulatory Commission NUREG-1556 technical report, Volume 7; October 2017.
6. Kase RK, Barbee DD, Wilson RP, et al. Radiation protection in veterinary medicine. National Council on Radiation Protection and Measurements. Report No. 148; December 2004.
7. Lattimer JC, Selting KA, Lunceford JM, et al. Intraarticular injection of a Tin-117m radiosynoviorthesis agent in normal canine elbows causes no adverse effects. Vet Radiol Ultrasound. 2019;60:567-574.
8. Karavida N, Notopoulos A. Radiation synovectomy: an effective alternative treatment for inflamed small joints. Hippokratia. 2010;14: 22-27.
9. Rodriguez-Merchan EC, Wiedel JD. General principles and indications of synovithesis (medical synovectomy) in haemophilia. Hoemophilia. 2001;75uppl2;61-10.
10. Silva M, Luck JV Jr, Llinas A. Chronic hemophilic. Hoemophilia. Biosno NC, et al. Computed tomographic identification of dysplasia and progression of osteoarthritis in dog elbows previously assigned OFA grades 0 and 1.
Vet Radiol Ultrasound. 2014;55:511-520.

Synovetin OA® is marketed by:

© 2020 Exubrion Therapeutics, Inc.

All Rights Reserved.

Printed in USA.

July 2020

EXN-SYN-032